Exercise 11

Find the differential of each function.
(a) $y=x e^{-4 x}$
(b) $y=\sqrt{1-t^{4}}$

Solution

Part (a)

Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x e^{-4 x}\right) \\
& =\left[\frac{d}{d x}(x)\right] e^{-4 x}+x\left[\frac{d}{d x}\left(e^{-4 x}\right)\right] \\
& =(1) e^{-4 x}+x\left[e^{-4 x} \cdot \frac{d}{d x}(-4 x)\right] \\
& =e^{-4 x}+x\left[e^{-4 x} \cdot(-4)\right] \\
& =e^{-4 x}(1-4 x)
\end{aligned}
$$

Therefore, the differential of $y=x e^{-4 x}$ is

$$
d y=e^{-4 x}(1-4 x) d x
$$

Part (b)
Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t} \sqrt{1-t^{4}} \\
& =\frac{1}{2}\left(1-t^{4}\right)^{-1 / 2} \cdot \frac{d}{d t}\left(1-t^{4}\right) \\
& =\frac{1}{2}\left(1-t^{4}\right)^{-1 / 2} \cdot\left(-4 t^{3}\right) \\
& =-\frac{2 t^{3}}{\sqrt{1-t^{4}}}
\end{aligned}
$$

Therefore, the differential of $y=\sqrt{1-t^{4}}$ is

$$
d y=-\frac{2 t^{3}}{\sqrt{1-t^{4}}} d t
$$

